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ABSTRACT: The current GFDL seasonal prediction system, the Seamless System for Prediction and Earth System
Research (SPEAR), has shown skillful prediction of Arctic sea ice extent with atmosphere and ocean constrained by obser-
vations. In this study we present improvements in subseasonal and seasonal predictions of Arctic sea ice by directly assimi-
lating sea ice observations. The sea ice initial conditions from a data assimilation (DA) system that assimilates satellite sea
ice concentration (SIC) observations are used to produce a set of reforecast experiments (IceDA) starting from the first
day of each month from 1992 to 2017. Our evaluation of daily sea ice extent prediction skill concludes that the SPEAR sys-
tem generally outperforms the anomaly persistence forecast at lead times beyond 1 month. We primarily focus our analysis
on daily gridcell-level sea ice fields. SIC DA improves prediction skill of SIC forecasts prominently in the June-, July-,
August-, and September-initialized reforecasts. We evaluate two additional user-oriented metrics: the ice-free probability
(IFP) and ice-free date (IFD). IFP is the probability of a grid cell experiencing ice-free conditions in a given year, and IFD
is the first date on which a grid cell is ice free. A combined analysis of IFP and IFD demonstrates that the SPEAR model
can make skillful predictions of local ice melt as early as May, with modest improvements from SIC DA.
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1. Introduction

The rapid decline in Arctic summer sea ice threatens local
communities and ecosystems and also creates economic
opportunities for marine fishing, shipping and resource
extraction. Subseasonal-to-seasonal forecasts of Arctic sea ice
hence can aid mitigation of impacts and provide valuable
planning information. The current generation of dynamical
climate prediction systems have been shown to skillfully pre-
dict Arctic sea ice cover (e.g., Sigmond et al. 2013; Wang et al.
2013; Chevallier et al. 2013; Msadek et al. 2014; Bushuk et al.
2017; Dirkson et al. 2019; Bushuk et al. 2019). These skill eval-
uations have been mostly focused on monthly area-integrated
sea ice variables, such as sea ice extent (SIE) or sea ice area
(SIA), rather than local and daily fluctuations.

Zampieri et al. (2018) was the first study to assess predic-
tions of Arctic sea ice on subseasonal time scales using daily
data from a subseasonal-to-seasonal (S2S) prediction data-
base (Vitart et al. 2017). They found that coupled forecast sys-
tems exhibit a large range of skill in predicting the sea ice
edge position and that systems with direct assimilation of sea
ice observations show better skill. Wayand et al. (2019)
assessed the prediction skill for gridcell-level SIE of several
dynamical models using daily data, also finding a wide range

of skill across models and finding that most models beat the
persistence forecast for lead times beyond a few weeks. Liu
et al. (2018) analyzed NCEP’s Climate Forecast System, ver-
sion 2, gridcell-level sea ice concentration (SIC) using weekly
data and found high skill in the marginal ice zones and that
Arctic-averaged SIC skill exceeds the anomaly persistence
forecast for lead times beyond a few weeks.

The Sea Ice Prediction Network has started collecting sub-
missions of full fields of predicted SIC, sea ice probability
[ice-free probability (IFP)], and ice-free date (IFD; Bhatt et al.
2020). Their report highlighted the difficulty of forecasting
the timing of melt, given the large uncertainty among the par-
ticipating models. Sigmond et al. (2016) evaluated ice retreat
and advance date predictions in the Canadian Seasonal to
Interannual Prediction System and showed that their system
provides additional value beyond the anomaly persistence
forecast for all initialization months. However, their system
also has mean model biases that lead to reduced forecast skill.
Dirkson et al. (2021) applied ensemble calibration methods to
the same dynamical forecasting system and demonstrated a
boost in skill for both IFP and IFD.

The sources of Arctic sea ice predictability at subseasonal-
to-seasonal time scales mainly come from the persistence and
reemergence of SIC, sea ice thickness (SIT), and upper-ocean
heat content anomalies (Guemas et al. 2016; Blanchard-
Wrigglesworth et al. 2011). Capitalizing on these sources of
predictability requires accurate sea ice and ocean initial condi-
tions for forecasts, which is one of the major challenges in
Arctic sea ice prediction (Liu et al. 2019). Efforts have been
made in the past two decades at adopting various data assimi-
lation methods to constrain sea ice initial conditions with
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direct sea ice observations. Most of the work has been focused
on assimilating SIC observations (e.g., Lindsay and Zhang
2006; Lisæter et al. 2003; Stark et al. 2008; Kimmritz et al.
2018; Zhang et al. 2021), with fewer studies assimilating SIT
observations (Chen et al. 2017; Fritzner et al. 2019; Xie et al.
2016; Blockley and Peterson 2018).

No comprehensive evaluation of the benefits of sea ice data
assimilation on sea ice prediction from subseasonal-to-
seasonal time scales has been made, however, to the authors’
knowledge. Van Woert et al. (2004) looked at May-initialized
forecasts at the hourly time scale. Caya et al. (2010) conducted
short-term (48 h) forecast in an extreme winter. Massonnet
et al. (2015) conducted winter-initialized hindcast experiments
to explore the potential benefits of improved sea ice initial
conditions at seasonal time scale. Kimmritz et al. (2019) con-
ducted reforecast experiments throughout the year every other
month, finding that regional SIE skill (particularly in summer)
is improved up to four months as a result of SIC DA. Their
DA frequency was low (once per month) and hence did not
explore the full advantage of SIC DA. They focused their eval-
uation on monthly regional SIE.

Our preceding work (Zhang et al. 2021) assimilated satel-
lite-retrieved SIC observations in GFDL’s new seasonal pre-
diction system, the Seamless System for Prediction and Earth
System Research (SPEAR) and suggested that improved ini-
tial conditions of SIC and SIE would enhance the prediction
skill of Arctic sea ice at lead times of 0–2 months. In this
study, we test this hypothesis and investigate how much
improvement SIC DA has on predicting different sea ice vari-
ables in the Arctic, including the area-integrated SIE, gridcell-
level SIC, IFP, and IFD. We describe the GFDL prediction
system, experimental design of the reforecasts, observations
used to evaluate model results, evaluation metrics, and refer-
ence forecasts in section 2. An Arctic sea ice prediction skill
assessment from the reforecast experiments is presented in
section 3. We summarize and discuss our findings in section 4.

2. Methods

a. The SPEAR system

The recently developed GFDL seasonal prediction system,
SPEAR, is used in this study. The SPEAR forecast system
employs the newest component models from GFDL (Delworth
et al. 2020): the AM4 atmosphere model, MOM6 ocean model,
LM4 land model, and SIS2 sea ice model. It has two versions:
SPEAR_LO and SPEAR_MED, which share the same nomi-
nal 18 ocean and sea ice resolution. SPEAR_LO uses 18 resolu-
tion in the atmosphere/land components and SPEAR_MED
uses 0.58 resolution in these components. The two versions
show very similar prediction skill for Arctic sea ice cover
(Bushuk et al. 2022); thus, SPEAR_LO is used in this study for
computational considerations.

The SPEAR seasonal prediction system uses initial condi-
tions from two separate assimilation experiments. The ocean
initial conditions are from an ocean DA run performed with
SPEAR_LO that assimilates observations of sea surface tem-
perature (SST), and subsurface temperature and salinity data

from various sources (Lu et al. 2020). The atmosphere, land,
and sea ice initial conditions are from an atmosphere and SST
nudging run of SPEAR_LO in which the wind, temperature,
and humidity are nudged to the NOAA/NCEP Climate Fore-
cast System Reanalysis (CFSR), and SST is nudged toward
the Optimum Interpolation Sea Surface Temperature
(OISST). The SSTs in sea ice covered grid cells (SIC . 30%
in OISST) are nudged toward the seawater freezing point cal-
culated based on the model-predicted local salinity to avoid
using the low-quality SST observations under sea ice.

No sea ice observations are directly assimilated in these
two SPEAR_LO assimilation experiments. The assimilation
or nudging of SST observations can constrain sea ice condi-
tions well if SIC is 100% or 0%. In the case where a grid cell
is partially covered by sea ice, the SST represents an average
of the underice SST and open-ocean SST and does not
uniquely determine the SIC; thus, the SIC DA will provide
additional information.

b. Two sets of reforecast experiments

Two sets of 15-member reforecast experiments spanning the
years from 1992 to 2017, one without (nIceDA) and one with
(IceDA) SIC assimilation, are initialized from the first day of
each month and run for a 1-yr ensemble forecast. Their experi-
mental configurations are listed in Table 1. The two reforecast
suites use identical atmosphere, ocean, and land initial condi-
tions, which are the standard initial conditions used in the
SPEAR seasonal predictions as described in section 2a. The
only difference between the two reforecast sets are in their sea
ice initial conditions: the experiment nIceDA is initialized from
the atmosphere and SST-nudged SPEAR_LO run (SPEAR_-
Nudged hereinafter), and the experiment IceDA uses sea ice
initial conditions from a sea ice DA system described next
(Zhang et al. 2021; SPEAR_IceDA hereinafter).

The major difference between the two sets of sea ice initial
conditions is that SPEAR_IceDA directly assimilates SIC obser-
vations and SPEAR_Nudged does not. Satellite-retrieved SIC
observations are assimilated every 5 days into SPEAR_IceDA
using an ice-ocean model setup forced by the Japanese 55-year
Reanalysis (JRA55-do; Tsujino et al. 2018) to generate a sea ice
reanalysis product from 1982 to 2017. The SIC DA is done
within the framework of the linked SIS2 and the Data Assimila-
tion Research Testbed (DART), with the ensemble adjustment
Kalman filter (EAKF). The observation error is set to 10%. The
sea ice concentration of each ice-thickness category is the state
variable that is updated by EAKF, while the mean thickness of
each category remains unchanged. A Gaspari–Cohn half-width
of 0.03 radians (∼190 km) is applied for horizontal localization.
More details can be found in Zhang et al. (2021).

SST in SPEAR_IceDA is nudged toward OISST in the
same way as in SPEAR_Nudged but the SIC observations
used to determine sea ice edges are different in the two initial-
ization products. SPEAR_Nudged and SPEAR_IceDA also
use different atmospheric reanalysis datasets to constrain the
atmosphere. These might cause some differences in the sea
ice initial conditions. However, as shown in Zhang et al.
(2021), the case driven by the CFSR forcing shows very
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similar skill of regional SIE to (or even slightly higher in
some subregions than) the case driven by the JRA-55do,
used in initializing SPEAR_IceDA. Their gridcell-level SIC
skills are also very similar as evaluated by RMSE (Fig. S1 in
the online supplemental material) and ACC (supplemental
Fig. S2). Hence, any improvements we identify in IceDA
can be attributed to the improved sea ice initial condition
from SIC DA.

Both the SPEAR_LO ocean DA experiment and
SPEAR_IceDA have 30 ensemble members. Since each
ensemble member is equally possible to represent our best
knowledge of the truth, we do not pick ensemble members
specifically. The first 15 ensemble members are used to initial-
ize the reforecast experiments. The reduction in ensemble
size from 30 to 15 is for computational considerations.

c. Observations

We use two observational products of SIC retrieved from the
same satellite measurements from the Scanning Multichannel
Microwave Radiometer (SMMR) on the satellite Nimbus-7 and
the Special Sensor Microwave Imager (SSM/I) sensors on the
Defense Meteorological Satellite Program (DMSP) satellites.
We use the daily SIC product produced by the National Snow
and Ice Data Center (NSIDC) using the “NASA Team” algo-
rithm, version 1.1 (Cavalieri et al. 1996), which is also the SIC
observations assimilated in SPEAR_IceDA. We also use the
daily NSIDC SIC product derived using the “Bootstrap”
method (Comiso 2017) to evaluate the observational uncer-
tainty that stems from satellite SIC retrieval algorithms.

d. Evaluation skill metrics

The root-mean-square error (RMSE) and detrended or full
anomaly correlation coefficient (ACC) are used in this study
to evaluate the forecast skill of different sea ice variables. No
bias correction is applied to any of the forecast variables. The
RMSE averaged over time is defined as

RMSE �
��������������������
1
n

∑n
i�1

xi 2 yi( )2
√

,

where n is the number of years, i is the year index, x is
the model variable, and y is the observation. The ACC is
defined as

ACC �

∑n
i�1

xi 2 x( ) yi 2 y( )�����������������∑n
i�1

xi 2 x( )2
√ �����������������∑n

i�1
yi 2 y( )2

√ ,

where n is the number of years, i is the year index, x is the
model variable, and y is the observation. For the detrended
ACC x and y are linear trend fits to the data, and for the full
ACC they are temporal-mean values.

We detrend the model time series of SIC and SIE for
detrended ACC calculations. Instead of removing a linear
trend of the whole time series, we remove the trend that only
uses past years’ data. This avoids the dependence of the
anomaly on future data. The time series are detrended as fol-
lows, assuming there is no trend in the first 3 years:

y′i � yi 2
∑i21

j�1
yi if i# 3

y′i � yi 2 ai21ti 1 bi21( ) if i . 3

,

where yi and y′i are the original and detrended values at year
i, respectively; j is the year index; ai21 and bi21 are respec-
tively the linear trend and intercept calculated based on data
in the past years; and ti is the time at year i.

e. Evaluated sea ice variables and the definitions of
IFP and IFD

The sea ice variables evaluated in the study are SIC, SIE,
IFP, and IFD. The SIE is the most commonly evaluated
variable in sea ice forecast studies. Its skill shows how mod-
els represent the areally integrated sea ice coverage. The
commonly used 15% SIC threshold has been adopted to
define a grid cell as ice covered (i.e., SIE = 1). In addition

TABLE 1. The experimental configurations of the reforecast experiments. The configurations are the same except for the sea ice
initial conditions.

nIceDA IceDA

Ocean model MOM6; 1.08 (0.58 in the Arctic), 75 vertical levels MOM6; 1.08 (0.58 in the Arctic), 75 vertical levels
Sea ice model SIS2; 1.08 (0.58 in the Arctic), 5 category ITD SIS2; 1.08 (0.58 in the Arctic), 5 category ITD
Atmosphere model AM4; 1.08, 33 vertical levels AM4; 1.08, 33 vertical levels
Land model LM4; 1.08 LM4; 1.08
Ocean IC SPEAR_LO Ocean DA SPEAR_LO Ocean DA
Sea ice IC SPEAR_Nudged: atmosphere nudged to CFSR,

SST nudged to OISST, and no SIC DA
SPEAR_IceDA: ice-ocean forced by JRA-55do,

SST nudged to OISST, and SIC DA
Atmosphere IC SPEAR_Nudged SPEAR_Nudged
Land IC SPEAR_Nudged SPEAR_Nudged
Reforecast period 1992–2017 1992–2017
Ensemble size 15 15
Initialization dates First of each month First of each month
Prediction length One year One year
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to SIE, we also evaluate gridcell-level SIC, which provides a
local assessment of skill and is also sensitive to SIC anomalies
within the ice pack.

We define a grid cell as ice free if its SIC is below 15% for
10 consecutive days, in a given year. The 10-day threshold is
selected to match the criteria used by Sigmond et al. (2016).
We also find that qualitative resulting forecast skill does not
change when we switch to a 3-day threshold. The IFD is
defined as the first day when a grid cell encounters the ice-
free condition. If a model ensemble member in a given grid
cell meets the ice-free condition at the beginning of the fore-
cast or has not met the ice-free condition by the end of the
summer, it does not have a valid IFD. However, this informa-
tion should still contribute to the final IFD to be evaluated
against observations. Hence, we define the model-predicted
IFD as the median of the IFD of the 15 ensemble members
and assign an IFD of negative infinity or positive infinity to
those ensemble members that begin ice free or never go ice
free, respectively. The ensemble median statistic allows for
this information to be incorporated more naturally than the
ensemble mean. The model-forecast IFP is defined as the
fraction of ensemble members that have SIC , 15% for 10
consecutive days at some point in the year. For observations,
the IFP of a grid cell is 1 if it meets the ice-free condition and
is 0 if it does not.

f. Reference forecasts

We use different reference forecasts to evaluate the sea ice
metrics. We claim that the model can make skillful predic-
tions of a variable when its skill is better than the reference
forecast of that variable at 95% significance level. For SIE
and SIC, we construct anomaly persistence forecasts that
use the observed anomaly one day prior to the initialization
date as predictors. The anomaly is calculated by removing the
linear trend of the past years as described in section 2d. The
SIE persistence forecast is calculated for each subregion and
the SIC persistence forecast each grid cell.

The reference forecasts for IFP and IFD are a time-evolving
climatology based on the previous 10 years of sea ice observa-
tion data. We define an IFP reference forecast for each fore-
casting year and each grid cell as the fraction of years that
have a valid IFD in the past 10 years. The IFD reference fore-
cast is defined as the median IFD over the past 10 years. For
example, the IFP in a grid cell for year 2017 is the number
of years that have ever experienced ice-free conditions from
2007 to 2016 divided by 10. Similarly, the IFD for 2017 is the
median of the IFDs in years from 2007 to 2016. We refer to
these reference forecasts as Clim_10yr below. Considering
that the observations have binary IFP, and the difficulty of
incorporating nonvalid IFD information, we do not detrend
the time series of IFP and IFD for the ACC calculation. How-
ever, since the reference forecasts are based on data only from
the past 10 years, their time series contain trend information.
Hence, the skill compared between the model forecasts and
the reference forecasts has incorporated the skill from trends.
Comparing the skill of model-predicted IFD and IFP with
these reference forecasts allows us to assess whether the

SPEAR system has additional skill beyond the long-term
trend in these quantities.

3. Results

a. Observational uncertainty

We show the root-mean-square difference (RMSD) and
ACC of SIC, IFP, and IFD between the two NSIDC SIC data-
sets retrieved from the algorithms of NASA Team and
Bootstrap in Fig. 1. The largest RMSD of SIC occurs in
September (Fig. 1a; figures in other seasons are not shown)
and is relatively uniform across the Arctic, with magnitude
ranging from 10% to 25%. The large summer uncertainty is
likely due to surface melt and increased atmospheric moisture
(Meier 2005). The two datasets are consistent in trend and
interannual variability leading to their high correlation (Fig. 1b).
Figure 1c shows the observed September SIC climatology in
the Arctic.

IFP and IFD are much less commonly evaluated by the sea
ice prediction community. The RMSD of the IFP observa-
tions shows a ring pattern corresponding to the zone of
September sea ice variability (Fig. 1d). The two products
agree well in the central Arctic region of perennial ice and an
enclosing region of perennial open water. The difference
shows up in between these two regions, which highlights the
sea ice variability zone. The largest differences are found in
the Canadian Archipelago. The ACC map shows similar pat-
terns of agreement and difference between the two observa-
tional products (Fig. 1e).

We expect that the ice-free condition has large variations in
the sea ice peripheral regions where SIC has large interannual
variability. Figure 1f shows the observed IFP represented as
the fraction of years in which a grid cell meets the ice-free con-
dition in the years from 2008 to 2017. The regions with values
between 0 and 0.5 are where less than 50% of years have met
the ice-free condition. Spurious skill values may emerge
because of small sample sizes in those regions; thus, we mask
out grid cells where less than 50% of years have valid IFDs
(i.e., meet the ice-free condition). This leaves a slightly smaller
Arctic area to be evaluated as shown in Fig. 1i. The two obser-
vational datasets agree well in the evaluated area. The largest
differences are in the Barents Sea where the RMSD can be
60 days (Fig. 1g) and the ACC as low as 0.7 (Fig. 1h).

b. Regional sea ice extent predictions

Our preceding SIC DA work (Zhang et al. 2021) shows
that SPEAR_IceDA produces better interannual variability
of SIE than SPEAR_Nudged in summer and speculates that
using SPEAR_IceDA as sea ice initial conditions will improve
summer predictions of SIE at short lead times. Figure 2 shows
the detrended ACC of SIE averaged over initialization months
of June, July, August, and September. The September-initialized
forecast includes a forecast for October as well, but excluding the
September month does not change the overall conclusions
(figures not shown). Figure 2 confirms that IceDA shows higher
ACC of detrended SIE than nIceDA in the first 60 days in
the GIN Seas, Laptev, Chukchi, and Beaufort Seas, Canadian
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Archipelago, and the pan-Arctic, while IceDA converges with
nIceDA after 30 days in the Barents Sea and shows lower ACC
after 30 days in the East Siberian Sea. The full ACC of SIE is
always slightly higher than the detrended ACC due to the

model’s ability to capture the decreasing trend of Arctic sea ice.
Since the differences between the reforecasts shown in the full
ACC are qualitatively similar to that in the detrended ACC, only
the detrended ACC plots are presented.

FIG. 1. The RMSD of September (a) sea ice concentration (SIC), (d) ice-free probability (IFP), and (g) ice-free date (IFD), and the
ACC of September (b) SIC, (e) IFP, and (h) IFD between the NSIDC NASA Team (NT) and Bootstrap (BT) observations. Examples of
the NT product are also shown for the 2008–17 (c) mean September SIC, (f) IFP, and (i) median IFD.
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In comparing with the reference persistence forecast, it is
seen that the skill of both SPEAR reforecasts is lower than
persistence for short lead times of 0–10 days and exceeds the
persistence forecast within 35 days in most regions of summer

sea ice variability. The experiment IceDA begins to outper-
form the reference at lead times of 7 days in the Canadian
Archipelago, 10 days in the East Siberian Sea, Chukchi, and
Beaufort Seas, 15 days in the Laptev Sea, and 25 days in the

FIG. 2. ACC of detrended sea ice extent (SIE) for regions of summer sea ice variability for nIceDA (blue), IceDA
(red), and anomaly persistence forecasts (black). The time series shown as a function of forecast days are averaged
over initialization months of June, July, August, and September. The shading represents6(2)1/2 standard deviations of
the 14-day running mean ACC values calculated from the Bootstrap procedure. Open circles on the bottom indicate
that the 14-day running mean detrended ACC values between nIceDA and Ice DA are significantly different at the
95% confidence level. Filled circles indicate that IceDA and the SIE persistence forecast are significantly different at
the 95% confidence level. Black circles indicate that the skill of IceDA exceeds nIceDA or the persistence forecast,
and gray circles indicate that the skill of IceDA is lower than nIceDA or the persistence forecast.
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GIN and Barents Seas. The experiment nIceDA is slower to
outperform the reference, taking approximately 10 days in
the Canadian Archipelago, 15 days in the East Siberian Sea,
25 days in the Barents, Laptev, and Beaufort Seas, 30 days in
the GIN Seas, and 35 days in the Chukchi Sea. The monthly
mean skill (Fig. S3 in the online supplemental material) shows
that the SPEAR reforecast generally exceeds the anomaly
persistence forecast in the first month and again shows a clear
skill improvement in the IceDA forecasts.

The winter forecasts (January-, February-, and March-initial-
ized forecasts) show different results than the summer forecasts
(Fig. 3). Although IceDA overall has higher detrended ACC
than nIceDA, the influence of ice DA initialization is much
smaller and less significant, and the two experiments converge
quickly except in the Labrador Sea. Neither forecast system sur-
passes persistence until around 25 days in the Pan Arctic and
both lose to the persistence forecast in general in the GIN and
Barents Sea. The reforecasts perform well in the Bering Sea
and Sea of Okhotsk. In the Labrador Sea, nIceDA loses to the
persistence forecast overall, while IceDA exceeds the persis-
tence forecast up to day 20 and is comparable to it afterward.

The ensemble mean of the 15 forecast members has been
used to evaluate model results so far. We now look at the
ensemble spreads of pan-Arctic SIE from the two reforecast
experiments initialized from April to November in Fig. 4. The
stabilized spread of SIE for forecast years 3–5 (Fig. S4 in the
online supplemental material) from April-initialized refore-
cast runs is shown for comparison (solid black line). The inter-
annual standard deviation of detrended SIE anomalies
calculated from the NASA Team observations over the same
time period (1992–2017) is also added for reference (dashed
black line). Both sets of initial conditions, SPEAR_IceDA
and SPEAR_Nudged, are tightly constrained, with SPEAR_
IceDA slightly more constrained mainly due to SIC DA. The
ensemble spreads of IceDA and nIceDA grow at almost
the same rate as a function of forecast time, suggesting that
the processes driving the loss of predictability are common
between the two sets of reforecast experiments. The ensemble
spread shown in the stabilized run represents the inherent
error saturation level of pan-Arctic SIE in the SPEAR fore-
cast system without initialization. The limit of predictability is
reached when the spread of the initialized ensembles reaches
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FIG. 3. As in Fig. 2, but for winter sea ice variability. The time series shown as a function of forecast days are averaged
over initialization months of January, February, and March.
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this free-running model spread. The seasonal cycle of internal
variability represented by the forecast system matches the
observations well. They both increase as sea ice melts, peak in
early October at the beginning of the growth season, and
drop again as sea ice advances. The ensemble spreads in the
reforecast experiments are much lower than the internal vari-
ability at short lead times because of the initialization and
grow toward the model internal variability, which also peaks
in early October (except for those initialized after October).

c. Sea ice concentration predictions

In this section we evaluate the forecast skill of SIC at the
gridcell level. A comparison with the SIC anomaly persistence
forecast indicates that both experiments show lower skill in
the beginning of the forecast period and exceed the reference
by the end of the first month for summer predictions (Fig. 5),
which is similar to the regional SIE results. The gap between
the reference and the experiments in the beginning, however,
is larger for SIC than SIE. This indicates that SIE forecasts
benefit from some cancellation of small-scale errors and that
gridcell-level SIC is a more challenging quantity to predict.
The SPEAR forecast experiments in general show lower
ACC scores for SIC than SIE. IceDA (red lines in Fig. 5) has
increased ACC significantly as compared with nIceDA (blue
lines in Fig. 5), although the gap with the persistence forecast
is still notable over the first 10 days, indicating that there is
additional room-for-improvement in the sea ice initial condi-
tions. The winter skill behaves similarly relative to the anom-
aly persistence forecast (Fig. S4 in the online supplemental
material). The following evaluations will be focused on the
differences between IceDA and nIceDA.

Figure 6 summarizes the area-integrated ACC of detrended
SIC at lead times of 0–2 months for the two SPEAR reforecast
experiments. Similar to the SIE results, IceDA shows superior
performance to nIceDA at lead times of 0–1 months. We also
see notable improvements in winter/spring in the GIN, Kara,
Labrador Seas and Sea of Okhotsk. Their performance is very
similar at the lead time of 2 months. Together with Fig. 5 and
Fig. S5 in the online supplemental material, Fig. 6 shows that
the improvement appears largest in the regions of summer sea
ice variability and tapers with lead time.

Figure 7 summarizes the pan-Arctic averaged detrended
SIC skill with initialization months from April to November.
Since the largest improvements from SIC DA initialization
is in summer, and summer Arctic sea ice attracts high inter-
est because of its large variability, trend, and stakeholder
interest, we focus on September-targeted forecasts initial-
ized from April to September. The plots in individual
regions are noisier, but in general show similar results (Fig.
S6 in the online supplemental material). As also shown in
Fig. 6, the two experiments have similar September-targeted
forecast skill at lead time of 2 months. Notable increases in
September skill from SIC DA are found in August- and
September-initialized forecasts. This is consistent with our a
priori knowledge that the anomaly persistence of ice area
or extent contributes to the short-term forecast skill of
September Arctic sea ice.

Figure 7 also shows that IceDA clearly has higher ACC val-
ues in the first two months of forecast across all the summer
initialization months. The ACC difference between the two
experiments is largest in the beginning and decreases with
forecast time. The skill of the reforecast experiments
increases as the lead time decreases. IceDA and nIceDA
show no obvious differences in skill in the October- and
November-initialized forecasts. This is expected since sea ice
anomalies are not the major source of autumn sea ice skill,
which is largely contributed by SST anomalies south of the
September sea ice edge position. It is also noticeable that the
ACC values in the initialization months from April to August
start to increase by the end of September. The increase of skill
after late September can be explained by the reemergence of
skill from the melt season to the growth season due to the per-
sistence of SST anomalies (Blanchard-Wrigglesworth et al.
2011; Guemas et al. 2016). IceDA also shows a better reemer-
gence of skill than nIceDA, especially in August-initialized
forecasts. Figure S7 in the online supplemental material shows
that the August-initialized forecast of IceDA has a stronger
negative correlation between the October SIE and the model-
predicted SST of earlier months, confirming that the SST-based
reemergence mechanism is stronger in IceDA. Although both
initial conditions are strongly nudged toward the same SST
observational product, this suggests that with SIC DA, IceDA
predicts more accurate better SST anomalies than nIceDA,
leading to better SIC prediction skill.

To illustrate the improvement at short lead times in IceDA
from nIceDA, we show spatial plots of SIC RMSE averaged
over forecast days 0–45 for IceDA (Fig. 8) and their differ-
ence with the nIceDA forecasts (Fig. 9). The errors are
mainly concentrated in the marginal ice zones, while the

FIG. 4. Ensemble spread of detrended pan-Arctic SIE from the
two reforecast experiments (colored lines and thin black lines), the
estimated ensemble spread of the uninitialized SPEAR model
(thick black line), and the interannual standard deviation of the
detrended pan-Arctic SIE in the NASA Team observation from
1992 to 2017 (thick dashed black line).
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observational uncertainty is uniformly distributed across
the interior Arctic. Unlike the observational uncertainty that
is largest in summer, the magnitude of the forecast error in
summer is smaller than (Fig. 8i) or similar to (Figs. 8g,h) that
in other seasons. The magnitude of forecast error is compara-
ble to the observational uncertainty in September, but larger
in other months in the marginal ice zones. The error reduction
is largest in summer, modest in spring, small in winter, and
not discernible or even degraded in autumn. The small differ-
ences in autumn and winter likely result from the fact that the
sea ice edge position is largely controlled by SST during the

ice growth season, which is used as a constraint in both the
IceDA and nIceDA reforecasts.

The experiment IceDA shows high ACC of detrended SIC
in the ice variability zone (Fig. 10). While Fig. 6 shows that
IceDA has higher area-aggregated detrended ACC of SIC in
most regions than nIceDA at lead times of 0 and 1 months,
Fig. 11 further demonstrates that the improvement is quite
homogeneous across the whole Arctic. The skill improvement
of IceDA over nIceDA shown in the detrended ACC
(Fig. 11) is quite similar to the RMSE results; improvements
are largest in summer, moderate in spring, and marginal in
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FIG. 5. As in Fig. 2, but for area-averaged ACC.
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other seasons. The reduction of RMSE generally matches
well with the increase of ACC, for example, from May to July
in Hudson Bay and the Barents Sea and from June to September
in the Laptev, Chukchi, and Beaufort Seas. Slight degradation of
skill is found in the Baffin Bay in May and June (Figs. 9e,f, and
11e,f). The error reduction is persistent from January to August

in the GIN Seas (Figs. 9a–h), while the increase of ACC is patch-
ier in the GIN Seas (Figs. 11a–h).

d. Ice-free probability prediction

We showed in section 3c that IceDA generally outperforms
nIceDA in predictions of gridcell-level SIC and that these

FIG. 6. Area-averaged ACC of detrended SIC for each target month from lead 0 (red), lead 1 (orange), and lead 2 (blue). ACC is calcu-
lated each day of the year using data from 1993 to 2017 and then averaged for each month. Only grid cells that have . 10% SIC interan-
nual variability are taken into average for each day.
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improvements are mainly in spring and summer. In this sec-
tion we demonstrate that IceDA can improve probabilistic
forecasts of ice-free conditions as well. We assess the IFP
skill of the reforecast experiments initialized from May to
September. IceDA has a similar spatial pattern of IFP RMSE
to the Clim_10yr reference forecast and its RMSE decreases
as the initialization month progresses into summer (Fig. 12a).
The error magnitude of IFP for IceDA remains similar to
Clim_10yr until the initialization month of August, which is
also shown in the difference map (Fig. 12b). In the August-
and September-initialized forecasts, IceDA exceeds the refer-
ence forecast in most of the Arctic, with the largest RMSE
difference in the East Siberian, Laptev, Chukchi, and Kara
Seas. The magnitude of the model’s IFP RMSE is generally
larger than the observational uncertainty in IFP (Fig. 1), indi-
cating additional room for improvement in these predictions.
Their spatial patterns are very similar. The forecast errors and
observational uncertainties are concentrated in the seasonal
ice zones, which may be contributed by the errors in predict-
ing and uncertainties in observing melting processes. In com-
paring IceDA with nIceDA, it is seen that the improvement
also emerges in the initialization months of August and
September, in which reductions of RMSE up to 0.15 are seen
in the Beaufort, Chukchi, East Siberian, Laptev, and Kara
Seas, and part of the central Arctic (Fig. 12c).

The experiment IceDA shows higher ACC of IFP than
Clim_10yr even in the May-initialized forecasts (Fig. 13a),
which suggests that IceDA has the potential to make skillful
forecast of IFP as early as in May. Clim_10yr has advantages
in the Chukchi and Beaufort Seas as compared with the
May-, June-, and July-initialized forecast (Fig. 13b), likely
related to SPEAR’s model bias of overly thick and extensive

ice in these regions (Bushuk et al. 2022). IceDA outperforms
nIceDA in general, especially in these regions of model bias.
The largest improvement from IceDA is seen in the initializa-
tion months of August and September, which is consistent
with the largest reduction in RMSE in these months. The dif-
ference values of RMSE above 0.02 and ACC above 0.05 are
in general significant at the 95% confidence level (Figs. S8
and S9 in the online supplemental material).

e. Ice-free date prediction

In this section, we further examine the skill of the SPEAR
system in forecasting the timing of the transition from ice
cover to open water. The IFD RMSE for the Clim_10yr refer-
ence forecast is similar to the May-initialized forecast for
IceDA (Fig. 14a). The largest error (up to ∼80 days) is seen in
the Labrador, GIN, Barents, and Bering Seas. The forecast
skill of IceDA gradually increases with shorter lead time.
Dominant advantages of July- and August-initialized IceDA
over Clim_10yr are found in almost all the peripheral ice
regions (Fig. 14b). The data sample for September-initialized
forecast is very small since most of the regions either have
already met the ice-free condition before 1 September or are
located in the perennial ice zone. The difference between
IceDA and nIceDA are in general marginal (Fig. 14c). The
May-, June-, and July-initialized forecasts of IceDA shows
decreased RMSE (up to 10 days) in Hudson Bay and Baffin
Bay, and the July- and August-initialized forecasts of IceDA
in the Beaufort Sea. Slight increases of RMSE are seen in the
June-, July-, and August-initialized forecasts of IceDA in the
East Siberian Sea.

Relative to the observational uncertainty (Fig. 1g), the
forecast errors of IFD have larger magnitudes. However,
their spatial patterns are very similar, with the largest values
showing up in the Atlantic sector including the Barents,
Kara, and Labrador Seas. Particularly large IFD errors
occur near Svalbard and Novaya Zemlya, which are also
regions of large observational uncertainty potentially associ-
ated with land contamination. This indicates the need to
take better account of observational uncertainty when eval-
uating model performance.

The SPEAR model shows much higher IFD ACC than
Clim_10yr in general. The model has high ACC values in the
Labrador, Beaufort, Chukchi, Kara, Laptev, and Barents Seas
(Fig. 15a), which are also the regions IceDA shows advan-
tages over Clim_10yr (Fig. 15b). The experiment IceDA
shows a slight but persistent increase of ACC from nIceDA
(Fig. 15c). The large improvement in Hudson Bay and Baffin
Bay seen in the RMSE does not appear in the ACC map,
which suggests that the error in those regions is dominated by
model bias. The difference values of RMSE above 2 days
and ACC above 0.1 generally pass the 95% significance test
(Figs. S10 and S11 in the online supplemental material).

4. Conclusions and discussion

We conducted two sets of SPEAR reforecast experiments
to evaluate the benefits of improved sea ice initial conditions
on subseasonal-to-seasonal forecasts of the Arctic sea ice.

FIG. 7. Pan-Arctic averaged ACC of detrended SIC as a function
of forecast month. ACC is calculated everyday of the year using
data from 1993 to 2017. Only grid cells that have . 10% SIC inter-
annual variability are taken into average for each day. In the area-
averaging step, values averaged over less than 10% area of a cer-
tain region are filtered out.
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FIG. 8. SIC RMSE averaged over forecast days 0–45 for each initialization month in the experiment IceDA.
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FIG. 9. RMSE differences of SIC averaged over forecast days 0–45 between the experiments
IceDA and nIceDA (IceDA2 nIceDA) for each initialization month.
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FIG. 10. Detrended SIC ACC averaged over forecast days 0–45 for each initialization month in
the experiment IceDA.
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FIG. 11. ACC differences of detrended SIC averaged over forecast days 0–45 between the two
experiments (IceDA2 nIceDA) for each initialization month.
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The experiment nIceDA is initialized from SPEAR_Nudged
that does not directly assimilate any sea ice observations, and
the experiment IceDA is initialized from SPEAR_IceDA that
assimilates daily SIC observations. The sea ice variables

evaluated are sea ice extent, sea ice concentration, ice-free
probability, and ice-free date.

In both winter and summer forecasts of regional Arctic
SIE, IceDA generally shows better skill than nIceDA in the

FIG. 12. (a) RMSE of IFP for IceDA initialized from May, June, July, August, and September, and the reference forecast Clim_10yr,
(b) the difference of RMSE of IFP between IceDA and Clim_10yr, and (c) the difference of RMSE of IFP between IceDA and nIceDA.
Numbers in each plot indicate the pan-Arctic averaged RMSE of IFP.

FIG. 13. As in Fig. 12, but for ACC.
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first two months of the forecast. The improvement is largest
in summer and limited in winter. A comparison with the SIE
anomaly persistence forecast shows that the SPEAR system
has better skill in summer forecasts at lead times of 0–1 months
but does not perform as well in winter forecasts. The conclu-
sions from our daily analysis are mostly consistent with that

from the monthly analysis in our companion paper (Bushuk
et al. 2022).

The gridcell-level SIC results are similar to the SIE results
in that IceDA outperforms nIceDA in most regions and its
advantages taper with lead time. The difference between the
two experiments is largest in summer, moderate in spring and

FIG. 14. As in Fig. 12, but for IFD.

FIG. 15. As in Fig. 13, but for IFD.
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winter, and not discernible in autumn. This can be explained
by different predictability sources in different seasons.
Whereas summer sea ice predictability mainly comes from sea
ice area and volume anomalies, winter sea ice predictability is
influenced most by ocean conditions, which are very similar in
the two reforecast experiments. The SPEAR forecast skill
also exceeds the SIC anomaly persistence forecast skill within
the first month of the forecast period. The inferiority of the
SPEAR reforecasts to the anomaly persistence forecasts in
the first 0–10 days indicates that our sea ice initial conditions
are not perfect and there is still room for improvement. The
initial skill gap of SIC relative to persistence is larger than
that of SIE. This suggests that the gridcell-level SIC is a more
challenging variable to predict than regional SIE. The spatial
patterns of the differences in RMSE and ACC between the
two experiments show that IceDA improves SIC forecasts
mainly in the marginal ice zones. The reduction in RMSE and
increase in ACC agree well in general except the GIN Seas
where RMSE is reduced persistently from January to August
yet the ACC increase is not as obvious. This is likely due to a
large model bias in the GIN Seas that hinders the RMSE fore-
cast skill.

Our finding that IceDA outperforms nIceDA mostly in
summer-initialized short-term forecasts suggests that by
improving SIE/SIC initializations in IceDA, we are able to
boost the short-term predictions of summer Arctic sea ice.
The two initializations have applied the same SST restoring
technique and hence have similar SST anomalies. The
autumn-initialized short-term forecasts, therefore, are quite
similar between the two reforecasts, which is consistent
with previous findings that upper-ocean heat content anom-
aly is the major predictability source of autumn Arctic
sea ice.

Since assimilation of SST usually incorporates information
about sea ice edges, it indirectly improves sea ice extent
anomalies, and will therefore provide an important predict-
ability source for Arctic sea ice. However, we show in our pre-
ceding paper on SIC DA (Zhang et al. 2021) that direct
assimilation of SIC will further improve SIE and more impor-
tantly, improve SIC. We further demonstrate in this study
that both SIE and SIC forecasts are improved in IceDA. Fur-
thermore, SIC DA also improves SST anomaly persistence in
summer, which plays an important role in forecasting autumn
sea ice, although this improvement is only obvious in August-
initialized forecast and small in other initialization months.

Another important predictability source is SIT and the
assimilation of SIT has been actively explored by the Arctic
sea ice community to improve summer predictions at lead
times longer than several months. The large uncertainty asso-
ciated with the satellite observations and their availability
only in winter and the limited spatial and temporal coverage
of in situ observations make it challenging to generate a reli-
able year-round SIT reanalysis (Liu et al. 2019). Our next
immediate step is to investigate how to utilize the currently
available ice thickness satellite retrievals using ensemble
Kalman filters with the purpose of improving reanalysis SIT
interannual variability and eventually improving longer-term
predictions of Arctic sea ice.

We also evaluated IFP and IFD to assess the skill of fore-
casting ice-free probability and the timing of the seasonal
transition to open water. The SPEAR system can make
skillful predictions of both variables at lead times as early
as May, which is demonstrated by comparing their ACC
with the reference forecast. However, the difference in
RMSE between the SPEAR experiments and the reference
forecast is not clear until the initialization time of August
for IFP and July for IFD, and the magnitude of the differ-
ence is relatively small in comparison with the absolute
RMSE. The enhanced skill represented by ACC relative to
RMSE indicates that the model is capturing the interannual
variability of the sea ice–free conditions well but the model
may contain considerable IFD biases that need further
investigation.

The largest improvement in IFP skill from SIC DA is in
August- and September-initialized forecasts. SIC DA does
not have much influence in the IFP variability zone in the ear-
lier forecasts, and hence, it does not show large impact on the
IFP skill until August. The improvement in IFD from IceDA
is limited in general, showing smaller improvements than
those found for IFP.

In summary, we showed skillful subseasonal-to-seasonal
forecasts for Arctic sea ice cover in the newly developed pre-
diction system, SPEAR. Our work also represents an impor-
tant step toward comprehensively studying on the impact of
SIC DA on Arctic sea ice forecast skill. The prediction skill
for regional SIE and gridcell-level SIC exceed the reference
anomaly persistence forecasts within the first month of the
forecast period. This indicates that SPEAR is among the skill-
ful dynamical prediction systems previously evaluated. By
constraining the sea ice initial conditions with SIC DA,
improvements in SIC skill are prominent in summer-initialized
forecasts, moderate in spring, and small in winter and autumn.
This agrees well with Kimmritz et al. (2019) that summer-ini-
tialized forecasts particularly benefit from SIC DA. By evaluat-
ing two user-oriented metrics, IFP and IFD, we demonstrated
that the SPEAR system also makes skillful predictions of local
ice melt conditions as early as May. SIC DA shows improve-
ments in the forecast skill for IFP, especially for summer-initial-
ized forecasts, and shows a smaller impact on IFD predictions.
Overall, this study demonstrates that SIC DA improves both
regional and local-scale Arctic sea ice predictions, and therefore
represents an essential ingredient for future sea ice prediction
systems.
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